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cos 2u

(30)

e given by equation 33 [Hoek, 1965,
1].

7, = —b/2a(tan a =% sec a) (33)

“rors arise because some products of
ignometric functions of a removed by
lification of equation 30 are not mneg-
1en the trigonometric functions take ex-
lues.

e elaborate analysis than Hoek’s is
to determine the exact situation. It
he attempted here. Instead, notice that
y considerations suggest that the maxi-
sile stress is at the crack tip when the
\jor axis is parallel or perpendicular to
sipal stress, and that equation 33 sug-
at, in other positions, the maximum
ress is at some distance from the crack

tuation is more complex when the erack
. Hoek [1965, p. 24] used the same
sations as he made in the case of open
y show that on McClintock and Walsh's
sis of the behavior of closed cracks,

(34)

2 is the coefficient of friction on the
rface. The stress S, is tensile for values
\ greater than m sin . Taking m to be
y one, closed cracks inclined at more
} to P, will not, then, grow in uniaxial
sion.

, = P, sin (cosa — m sina)

NEw THEORY OF BRITTLE CREEP

»w use this discussion of stress distribu-
und cracks and Charles’s theory to ex-
ittle creep in uniaxial compression.

ise that a suberitical crack in uniaxial
sion extends in its own plane by stress
n due 1o the tensile stress near the crack
1 that when it reaches a critical length,
cates in the manner described by Brace
nbolakis [1963].

sequence may seem less plausible than
z that the crack grows along the path
bothetical branch fracture. However, the
ive leads the erack to a stable configura-

THEORY OF BRITTLE CREEP IN ROCK

tion without giving rise to any event that could
cause the microseismic emission commonly ob-
served in brittle ereep. The principal contribu-
tion to creep strain comes from strains and
displacements about propagating cracks. Once
these cracks have propagated, they are stable
or ‘crack hardened.

Sack [1946] has shown that results for
stresses around flat eracks in two dimensions
can be extended naturally to three dimensions,
to flat cracks with a circular plan. These cracks
have been termed ‘penny-shaped’ cracks. The
maximum tensile stress on the crack margin
lies in the plane of the minimum and maximum
principal stresses and differs only by a constant
from the value predicted by equation 30 for
cracks in two dimensions.

Suppose there are M (L, &) dL cracks in the
creep specimen with lengths at zero time be-
tween L, and L, + dL at angles to the principal
stress between « and a + da. If each crack
caused a strain increment v on propagating, the
total strain de due to those cracks is M(L, a)
vdL. The time ¢, for a crack length L, to grow
to its critical length L., is given from equation
25 by
by =

exp (A/KT)L.,""*

.[Q/B(n — 2)]L0-1(n-2)/21 (35)

’I o~ ELO— [(n—-2)/2]

defining E.
Similarly, the time (¢, — dt) for a crack of
length (L, + dL) to grow to L., is given by

(t; — dt) = E(L, + gp)~te-nm (36)
Substracting equation 36 from equation 35,
di = BL,~V 9™

1 = (1 4+ dL/L))' P (37)

If dt and dL are small and n is large, equa-
tion 37 can ke written

dt = [(n — 2)/2]EL,™™? dL (38)
il’hen the strain rate at ¢, due to the propagat-
ing cracks is de/dt, = M(L, a) v dL/dt,
de/dt, = [2/E(n — 2)]Lo"*- M(L, )v  (39)

It would be reasonable to expect more short
cracks than long ones. Thus M (L, «) is unlikely
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to be independent of L,. Unfortunately, there is
no direct way to determine the distribution of
crack lengths.

Gilvarry [1961] suggested the basis of an
indireet method. He considered the size dis-
tribution of the fragments in the single fracture
of an infinitely extensive brittle-body due to
the propagation of internal flaws. He divided

internal flaws into three types, depending on

the number of flaws against which they termi-
nate. There are volume, facial, and edge flaws
terminating against zero, ome, or two flaws,
respectively. Further classes were excluded be-
cause many of the fragments at fracture were
four-sided. Gilvarry found

g =1— exp[—(/k) — /)" — (/)]
where ¢ is the volume (or weight) passing a
mesh size z; k, j, i are the average spacings of

edge, facial, and volume flaws. Tf z is small, then

this may be written,

g =1— exp[—(z/k)]
and if x is very small,

g = (z/k) (40)
so that fragments passing the smallest mesh size
are controlled by edge flaws.

The weight dg in a size interval dz is given
by differentiating equation 40,

dg/dz = 1/k (41)

As dg = NKL* where N is the number of
fragments in size interval, the number of frag-
ments with average size L is given by

N = k'L (42)
Equation 42 has been confirmed experimentally
by a number of workers [Gilvarry and Berg-
strom, 1961]. In particular, Hamilton and
Knight [1958] report the exponent of L to be
about —2.75 for Pennant sandstone.

Single fracture has been defined by Gilvarry
[1961] as ‘fracture by an external stress system
which is instantly and permanently removed
when the first one or few Griffith cracks begin
to propagate. Subsequent flaws are activated
by stress waves produced by propagation of
prior ones . . . .’ Assume, then, that the small-

est fragments are bounded by flaws close’ to
their original lengths so that the length distri-
bution of the flaws can be written,
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